CVE-2026-27205
ADVISORY - githubSummary
When the session object is accessed, Flask should set the Vary: Cookie header. This instructs caches not to cache the response, as it may contain information specific to a logged in user. This is handled in most cases, but some forms of access such as the Python in operator were overlooked.
The severity depends on the application's use of the session, and the cache's behavior regarding cookies. The risk depends on all these conditions being met.
- The application must be hosted behind a caching proxy that does not ignore responses with cookies.
- The application does not set a
Cache-Controlheader to indicate that a page is private or should not be cached. - The application accesses the session in a way that does not access the values, only the keys, and does not mutate the session.
Common Weakness Enumeration (CWE)
Use of Cache Containing Sensitive Information
GitHub
-
CVSS SCORE
2.3low| Package | Type | OS Name | OS Version | Affected Ranges | Fix Versions |
|---|---|---|---|---|---|
| flask | pypi | - | - | <3.1.3 | 3.1.3 |
CVSS:4 Severity and metrics
The CVSS metrics represent different qualitative aspects of a vulnerability that impact the overall score, as defined by the CVSS Specification.
The vulnerable component is bound to the network stack, but the attack is limited at the protocol level to a logically adjacent topology. This can mean an attack must be launched from the same shared physical (e.g., Bluetooth or IEEE 802.11) or logical (e.g., local IP subnet) network, or from within a secure or otherwise limited administrative domain (e.g., MPLS, secure VPN to an administrative network zone). One example of an Adjacent attack would be an ARP (IPv4) or neighbor discovery (IPv6) flood leading to a denial of service on the local LAN segment (e.g., CVE-2013-6014).
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.
The successful attack depends on the presence of specific deployment and execution conditions of the vulnerable system that enable the attack. These include: A race condition must be won to successfully exploit the vulnerability. The successfulness of the attack is conditioned on execution conditions that are not under full control of the attacker. The attack may need to be launched multiple times against a single target before being successful. Network injection. The attacker must inject themselves into the logical network path between the target and the resource requested by the victim (e.g. vulnerabilities requiring an on-path attacker).
The attacker is unauthenticated prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.
Successful exploitation of this vulnerability requires limited interaction by the targeted user with the vulnerable system and the attacker's payload. These interactions would be considered involuntary and do not require that the user actively subvert protections built into the vulnerable system. Examples include: utilizing a website that has been modified to display malicious content when the page is rendered (most stored XSS or CSRF) running an application that calls a malicious binary that has been planted on the system using an application which generates traffic over an untrusted or compromised network (vulnerabilities requiring an on-path attacker).
There is some loss of confidentiality. Access to some restricted information is obtained, but the attacker does not have control over what information is obtained, or the amount or kind of loss is limited. The information disclosure does not cause a direct, serious loss to the Vulnerable System.
There is no loss of confidentiality within the Subsequent System or all confidentiality impact is constrained to the Vulnerable System.
There is no loss of integrity within the Vulnerable System.
There is no loss of integrity within the Subsequent System or all integrity impact is constrained to the Vulnerable System.
There is no impact to availability within the Vulnerable System.
There is no impact to availability within the Subsequent System or all availability impact is constrained to the Vulnerable System.